SAF.ET1.ST03.1000-GUI-01-01
General Introduction

General Introduction
SAF.ET1.ST03.1000-GUI-01-01

[image: image1.wmf]1

GENERAL INTRODUCTION

1 Introduction

1.1 Purpose

An increasing proportion of ANS functions is implemented by software and these functions are becoming more safety-critical. It is therefore necessary to define guidance on how assurance may be provided for software.

To complement the EATMP Air Navigation Systems Safety Assessment Methodology, initial material is needed for establishing such guidance and recommendations on the major activities required providing the appropriate safety and quality assurance level for software in Air Navigation Systems.

Using as a basis the “ANS Software lifecycle” document, this document intends to provide:

· A reference against which stakeholders can assess their own practices for software specification, design, development, operation, maintenance and decommissioning.
· Recommendations on the major processes required to provide assurance for software in Air Navigation Systems, including:

· An allocation process for Software Assurance Levels (SWAL);
· A SWAL grading policy, ie the identification of a policy and its rationale to justify and substantiate increasing stringency of the objectives to be met per SWAL;
· A list of objectives to be satisfied per SWAL;
· The identification of some appropriate activities (techniques or methods) to achieve these objectives mainly by referencing existing standards (when existing) in order also to provide guidance on how to give confidence that these objectives are achieved, so that a SWAL is satisfied.

For reminder, the “ANS Software Lifecycle” document provides:

· a recommended ANS Software lifecycle and its associated activities (how) to achieve the objectives (as identified in this document);
· The reference to other standards (focusing on ED109/DO278, ISO/IEC 12207, IEC 61508, ED12B/DO 178B and CMMi);

· An assessment of their coverage of the recommended lifecycle and its associated activities for the development, operation and maintenance of Air Navigation System software.

1.2
SCOPE
The scope of this document is software that is part of an Air Navigation System. However, such as ESARR6 V1.0, this document does not aim at applying to aircraft software (as ED12B/DO178B is the domain practice and acceptable means of compliance), this document mainly focuses on “ground” segment of ANS.
This document is part of Air Navigation System Safety Assessment Methodology as SAM-Part IV Annex F (SAM [2]) and consequently requires an a priori safety assessment (done in accordance with SAM). Namely a FHA and PSSA should be done and their results are input to this document as Software is addressed mainly within SSA. PSSA provides recommendations to allocate SWAL which are exactly the same as those described in Chapter 2 of this document. Chapter 2 of this document is included to make “Recommendations for ANS Software” covering overall aspects of Software within an Air navigation system.

The scope of this document covers the overall lifecycle of software within an Air Navigation System.
1.3
Structure of the Current Issue

This current issue of the report includes the following chapters:

· The purposes of Chapter 2 are to provide :

· The SWAL allocation process (illustrated by examples);

· The SWAL grading policy principles.

· The purpose of Chapter 3 is to list objectives to set-up a Software Safety Assurance System.

· The purpose of Chapter 4 is to list objectives per SWAL that belong to primary life cycle processes:

· Acquisition process

· Supply process

· Development process

· Operation process

· Maintenance process

· The purpose of Chapter 5 is to list objectives per SWAL that belong to supporting life cycle processes:

· Documentation process

· Configuration management process

· Quality assurance process

· Verification process

· Validation process

· Joint review process

· Audit process

· Problem resolution process

· The purpose of Chapter 6 is to list objectives per SWAL that belong to organisational life cycle processes:

· Management process

· Infrastructure process

· Improvement process

· Training process

· The purpose of Chapter 7 is to list additional objectives per SWAL that do not belong to ISO/IEC 12207, but have been added due to:

· The analysis of other standards more safety oriented (DO 178B/ED 12B and IEC 61508),

· ATM particularities (Field service experience),

· Omissions by existing standards (COTS).

· The purpose of Chapter 8 is to propose a structure of a Software Safety Folder (SSF) and to identify which objective output should contribute to fill in this SSF.

1.4 Target audience

This document is specifically targeted at:

Safety practitioners:
Correct process in a methodologically correct way.

They are responsible for:

the link between the programme/project and the safety assessment process, the methodological support to the different steps of the safety assessment process and the integration within the organisation Safety Management System (SMS).

For example, the safety practitioners have to ensure that SWAL is allocated in accordance with Chapter 2, and that SWAL is validated.

Software Team:
Application in their domain knowledge.

They apply those “Recommendations for ANS SW” for the relevant software.

For example, Software Team is responsible for the implementation of objectives of the correct SWAL and for the verification of their satisfaction.

Project/Programme Manager or Safety Manager.
1.5 Readership

The following table suggests a minimum reader’s attention to this document.

	
	Software Team
	Safety Practitioner
	Other roles (Programme/project Manager, Safety Manager, ..)
	System Designers

	Chapter 1 –

Introduction

	(
	(
	(
	(

	Chapter 2 –

SWAL (Part of PSSA)
	(
	(
	(
	(

	Chapter 3 –

Software Safety Assurance System
	(
	(
	(
	(

	Chapter 4 –

Primary lifecycle
	(
	(
	(
	(

	Chapter 5 –

Supporting Lifecycle
	(
	(
	(
	N/A

	Chapter 6 –

Organisational Lifecycle
	(
	(
	(
	N/A

	Chapter 7 –

Additional Lifecycle
	(
	(
	(
	N/A

	Chapter 8 –

Software Safety Folder
	(
	(
	N/A
	N/A

(: Detailed knowledge;

(: Aware;

N/A: Not Applicable.

2
References

[1]
ANS Software Lifecycle

by SAM-Software Task Force

SAF.ET1.STO1.1000-REP-01-00, edition 3.0 (TBD)
[2]
Air Navigation System Safety Assessment Methodology

by Safety Assessment Methodology Task Force

SAF.ET1.STO1.1000-MAN-01-00, edition 2.0 (04/2004)

3 GLOSSARY

	Adaptation Data
	Data used to customise elements of the Air Traffic Management System for their designated purpose (See note1).

	ANS
	Air Navigation System

	Approval
	A means by which an authorised body gives formal recognition that a product, process, service, or operation conforms to applicable requirements.

Note:
For example, approval is a generic term to refer to certification, commissioning, qualification and initial operational capability, etc.

	Approval Authority
	The relevant body responsible for the approval in accordance with applicable approval requirements.

	Configuration data *
	Data that configures a generic software system to a particular instance of its use (for example, data for flight data processing system for a particular airspace, by setting the positions of airways, reporting points, navigation aids, airports and other elements important to air navigation)

	HMI
	Human Machine Interface

	Independence *
	For software verification process activities, independence is achieved when the verification process activities are performed by a person(s) other than the developer of the item being verified; a tool(s) may be used to achieve an equivalence to the human verification activity.

	Overload Tolerance*
	The behaviour of the system in the event of, and in particular its tolerance to, inputs occurring at a greater rate than expected during normal operation of the system.

	Resource Usage*
	The amount of resources within the computer system that can be used by the application software.

Note: Resources may include main memory of various categories (such as static data, stack and heap), disc space and communications bandwidth and may include internal software resources, such as the number of files which may be simultaneously open.

	Software *
	Computer programs and corresponding configuration data, including non-developmental software (e.g. proprietary software, Commercial Off The Shelf (COTS) software, re-used software, etc.), but excluding electronic items such as application specific integrated circuits, programmable gate arrays or solid-state logic controllers.

	Software Component *
	A component can be seen as a building block that can be fitted or connected together with other reusable blocks of software to combine and create a custom software application.

	Software Failure *
	The inability of software to perform a required function correctly.

	Software Lifecycle data*
	Data that is produced during the software life cycle to plan, direct, explain, define, record, or provide evidence of activities. This data enables the software life cycle processes, system or equipment approval and post-approval modification of the software product.

	Software Robustness*
	The behaviour of the software in the event of unexpected inputs, hardware faults and power supply interruptions, either in the computer system itself or in connected devices.

	Software Timing Performances*
	The time allowed for the software to respond to given inputs or to periodic events, and/or the performance of the software in terms of transactions or messages handled per unit time.

	Software Unit
	An element specified in the design of a Software Component that is separately testable.

	Supplier
	A person or organisation seeking approval from the Approval Authority.

	System
	An Air Navigation System is composed of People, Procedures and Equipment (Software, Hardware and HMI)

	Validation
	Confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled (usually used for internal validation of the design).

	Verification*
	Confirmation by examination of evidence that a product, process or service fulfils specified requirements.

*: same as ESARR6 V1.0
Note 1: Extended definition of adaptation data
Adaptation data is utilized to customize elements of the CNS/ATM system for its designated purpose at a specific location. These systems are often configured to accommodate site-specific characteristics. These site dependencies are developed into sets of adaptation data. Adaptation data includes:

· Data that configures the software for a given geographical site, and

· Data that configures a workstation to the preferences and/or functions of an operator.

Examples include, but are not limited to:

a. Geographical Data – latitude and longitude of a radar site.

b. Environmental Data – operator selectable data to provide their specific preferences.

c. Airspace Data – sector-specific data.

d. Procedures – operational customization to provide the desired operational role.
Adaptation data may take the form of changes to either database parameters or take the form of pre-programmed options. In some cases, adaptation data involves re-linking the code to include different libraries. Note that this should not be confused with recompilation in which a completely new version of the code is generated.

Adaptation data should be developed to the same assurance level as the one of the code that processes them.

Note 2: additional information on “Software Component” definition
In the framework of this document, it was found necessary to further developed the definition of “Software component” by providing the following information:

A software component is the result of the first level of decomposition of the software architecture, so that requirements, actions, objects, input and output flows can be associated to that software component.

Therefore, it can be a process if the application is based on a multi-process architecture or a thread if the architecture is mono or multi-process and multi thread or a set of actions or a set of objects with their associated methods or a state and its associated actions of a finite state machine.

Note 3: additional information on “Software Unit” definition

In the framework of this document, it was found necessary to further developed the definition of “Software Unit” by providing the following information:

A software unit is a low level of decomposition of the software architecture (can be the lowest). Requirements, actions, objects, input and output flows can be associated to that software unit that can be verified (and more specifically be tested).

Therefore, it can be a file or a module or a single object with its associated methods or an interrupt or device handler.
Page 2
Released Issue
Edition: 1.0
Edition: 1.0
Released Issue
Page 3

_990363405.ppt

1

